跟我学C++中级篇——内联

一、内联函数

内联函数的定义有各种形式,这里只提一种百度百科上的定义:“在计算机科学中,内联函数(有时称作在线函数或编译时期展开函数)是一种编程语言结构,用来建议编译器对一些特殊函数进行内联扩展(有时称作在线扩展);也就是说建议编译器将指定的函数体插入并取代每一处调用该函数的地方(上下文),从而节省了每次调用函数带来的额外时间开支。”。
定义是明确的,但重要的是理解,所谓内联就是和外联的区别。在C/C++中,函数被编译器编译到一个地址,然后映射到内存中,在需要调用的时候去寻找个地址跳转过去进行执行(有过基础的编译器知识的应该知道代码段、数据段之类的知识)。这对链接器来说是外部链接(常说的普通函数都是外部链接就是这个意思),而对于函数的应用来说这就是外联。知道了外联,内联就明白了,编译器同样把这个函数编译到一个地址,但这个地址有个特点,它就在调用它的位置,执行时不需要跳转。也就是说,函数的代码被直接插入到了调用的地址处,这就是所谓的内联。
内联函数一般使用inline关键字进行声明,但需要明白的是,不是说使用了inline,这个函数就一定会成为内联函数(即inline只是对编译器的建议,不是指令)。同样,没有使用inline的函数,也未必不是内联函数。或者说,内联函数有显示声明和隐式声明。显示声明就是使用inline说明符来指定,隐式则是标准定义的如=delete函数,第一个constexpr(C++20中consteval函数)函数,定义在类(结构体或联合体)内的函数(非具名模块)等。却inline的含义是非绑定的(non-binding),是否成为内联,由编译器自由确定(当然还是有标准的限制)。
大家都知道,调用普通函数的过程还是比较耗时的(参数进出栈、跳转以及函数的返回值等),同时,内联的函数也便于编译器进行优化。有兴趣可以查看一下编译器编译和系统调用函数的整个过程。所以,内联函数的目的其实就是为了提高效率。但事情往往是具有两面性,提高效率的同时,就得付出代价,这个代价就是空间的损失(空间的损失最终也会体现到性能上,比如内存的渴求和缓存失效等等)。inline函数把函数体直接编译到调用位置,会产生很相同的代码,虽然说一般情况下内联函数都比较小,但也架不住调用的地方多。所以应用内联函数最先考虑的其实就是空间和效率的平衡。这一点,有点类似于宏代码。
一般常见的内联函数是普通函数和类的普通成员函数,但实际上,在某些情况下,类的虚拟函数(直接操作对象而引用或指针)、递归调用(非尾部递归)等也可以考虑递归,这在一些书籍上都相关的介绍。

二、内联变量

在C/C++开发中,变量只能定义一次,否则就会报链接错误。为了控制这种错误,一般可以用类封包起来,或者使用static限定其的作用域。但开发者的自然的习惯,仍然是喜欢在头文件中定义,然后在其它各个编译单元使用。所以才有了对全局变量的cpp文件(编译单元)中定义,头文件中使用extern声明,然后其它编译单元都包含这个头文件。同样,类封包中的static成员(非const),也是类似的操作。这本身没有对错之说,只是一种规则而已。就和大家在马路上开车,国内车都是左面方向舵一样。
不过,把形式统一终归是有好处的,那个全球都是左舵车或右舵车这个不好统一,但变量统一总归是好统一一些。所以在C++17提出了inline变量,内联变量的出现,就基本达到了在头文件中定义变量,到处包含使用就可以了。
看一个简单例子:

//usecase1.h
inline int iSize = 100;

//usecase1.cpp
#include "usecase1.h"
void test(){std::cout<<iSize<<std::endl;}

//main.cpp
int main() {
  std::cout  <<  iSize << endl;
  return 0;
}

上面的代码在g++11中测试通过。

三、实现内联的方式

在上面提到过不是说写上inline说明符可以让这个函数真正成为内联函数,那么到底如何才能真正的让一个函数成为内联函数呢:
1、小函数
小函数,不仅是指这个函数代码量少,而且编译成汇编指令后也要少,代码量大或者有复杂指令的,如循环、switch等,编译器都会拒绝将其编译为内联函数。另外,析构函数一般也不建议使用内联,谁也不知道最终它会调用多少其它函数来释放资源。
2、惟一
这里的惟一指的是惟一的调用点,而不是调用一次。它其实是一个理论上的可能,实际上,很少能够做到。所以这点基本可以忽略。

需要指出的是,由于是编译器决定是否内联,所以不同的编译器可能有不同的要求,比如gcc要求只有在编译器开启优化选项时才会生效且不同的编译选项可能产生的结果有所不同。其它的平台可能有类似的要求,需要根据实际情况来决定。

四、宏与内联的不同

在前面分析时发现宏与内联非常相似,但二者还是有所不同的,看下面的代码:

#define mult1(a, b) a * b
inline int mult2(int a, int b)
{
    return a * b;
}

int getData(int &num)
{
  return num++;
}

#define mult3(a) (a*a)
int main()
{
   std::cout<<mult1(3+1,1+3)<<std::endl;
   std::cout<<mult2(3+1,1+3)<<std::endl;
   int c = 3;
   std::cout << mult3(getData(c));
}

宏与内联的不同在于:
1、宏一定会是被编译器确定内联,而内联函数则未必
2、宏展开需要考虑好执行顺序,如上面的例程,如果增加宏定义中的括号处理则就会产生相同的结果;反过来,内联函数的返回值也需要注意
3、宏不是类型安全的,但内联函数是

五、例程

下面看一些简单的例程:

//usecase2.h
#include <iostream>
inline int SetCount = 9;

//非成员函数内联
inline int add(int a, int b)
{
   return (a+b);
}
class UseCase2
{
public:
    UseCase2();
    UseCase2(const UseCase2 &) = delete;//隐式内联
public:
    void Display(int c){d_++;}//隐式内联 
    void Print(int c);
    public:
    //显示内联 
   inline int add(int a, int b)
   {
     return (a+b);
   }
public:
    static constexpr int n_{11 };//隐式内联 
    inline static thread_local int i_{ 10 };//线程本地内联变量
private:
    int d_ =0;
    inline static std::string s_{ "name" };
};
//显示内联 -建议在同一文件
inline void UseCase2::Print(int c){d_++;}

代码很简单,这里不做过多解释。

六、总结

内联的优势其实可以分成两个部分,一个是调用方面的,比如前面说的出栈入栈等 ;另外一个是调用时的优化,比如函数代码如果成为内联函数,编译就可以把一些类似的固定计算直接指定为计算的结果值。而内联的劣势,主要就在于内联导致的代码膨胀,而有些时候过度内联反而会导致性能的丧失。明白了内联的优缺点,就可以根据自己的实际开发需求来进行使用了。
整体上而言,内联函数适合于小型、高频函数的调用,通常可以在ORM的数据库属性读写中看到。另外,在模板编程中,由于模板的一些特殊要求,比如不支持分离编译,所以内联函数正好可以适合这种场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/585474.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

跨境选品师项目究竟算不算是蓝海项目呢?

在全球化日益加深的今天&#xff0c;跨境贸易成为了一个热门的话题。而在这一领域中&#xff0c;跨境选品师项目正逐渐崭露头角&#xff0c;被许多人视为蓝海项目中的一片新大陆。那么&#xff0c;跨境选品师项目究竟算不算是蓝海项目呢? 首先&#xff0c;我们需要明确什么是蓝…

ModuleNotFoundError: No module named ‘notebook.notebookapp‘

这个链接给出了一些解释https://blog.csdn.net/zjsnnn/article/details/135998315 但是他的问题是notebookapp.py在notebook中没有&#xff0c;在nbclassic中有 我的问题是两个文件夹都有这个文件&#xff0c;并且两个文件不一样&#xff0c;所以按他的修改没有成功。 我的问题…

特斯拉PIXCELL矩阵大灯擎耀远程控制技术照亮未来智能之光

在科技的浪潮中&#xff0c;特斯拉这个名字如同一道闪电&#xff0c;照亮了新能源汽车的天空。而在这片星空中&#xff0c;特斯拉PIXCELL矩阵大灯则如同一颗璀璨的星辰&#xff0c;以其独特的创新技术和卓越的性能&#xff0c;为驾驶者提供了前所未有的照明体验。矩阵大灯技术如…

邦注科技即热式节能模温机 模温机的工作原理

模温机是一种用于控制模具温度的设备&#xff0c;主要用于塑料注塑、压铸、橡胶成型等工艺中。 其工作原理主要包括以下几个步骤&#xff1a; 加热阶段&#xff1a; 当模具需要加热时&#xff0c;双温模温机会启动加热系统&#xff0c;将热传导油或热传导水加热至设定温度。加…

运行DeepSORT_YOLOv5_Pytorch时出现的问题

文章目录 前言问题1&#xff1a;Loaderyaml.FullLoader问题2&#xff1a;utils. -> yolov5.utils.问题3&#xff1a;np.float -> float问题4&#xff1a;np.int -> int问题5&#xff1a;ImportError: cannot import name time_synchronized from yolov5.utils.torch_u…

k8s集群Grafana精选dashboard页面

文章目录 参考文档 Grafana自选模板推荐模板&#xff1a;13332、13824、14518Grafana默认配置我们选择 Node Exporter/Nodes 的 Dashboard 进去&#xff1a;点击 Kubernetes/Networking/Cluster 进去使用模板查看结果 Grafana接入Prometheus数据Grafana添加监控模板导入 1860_r…

「C/C++ 01」计算结构体/类的大小和内存对齐

目录 一、计算结构体的大小 二、计算类的大小 三、内存对齐 一、计算结构体的大小 计算结构体的大小要遵循内存对齐规则&#xff1a;即从第二个成员变量开始&#xff0c;起始位置要计算&#xff0c;在自己的大小和默认对齐数(VS编译器中默认对齐数为8)中选择较小的那个&#x…

【漏洞复现】IP-guard WebServer 权限绕过漏洞

0x01 产品简介 IP-guard WebServer 是 IP-guard 网络安全管理系统的一部分,用于提供 Web 界面以进行用户权限管理、监控和审计。 0x02 漏洞概述 IP-guard WebServer的权限验证机制中存在设计缺陷,未授权的攻击者能够规避安全验证,通过后端接口执行文件的任意读取和删除操…

Docker数据管理和Dockerfile

目录 一.数据管理 1.作用 &#xff08;1&#xff09;修改配置文件例如&#xff0c;nginx.conf /usr/local/nginx/conf/nginx.conf —>/container_nginx/conf/nginx.conf &#xff08;2&#xff09;容器内部产生的日志&#xff0c;如何收集将容器内部存方日志文件的目录挂…

【Vue 2.x】学习vue之二组件

文章目录 Vue二组件第五章es6文件导入出1、导出export 组件&#xff08;component&#xff09;1、定义2、模块化与组件化3、组件的分类1、非单文件组件非单文件三步骤创建组件标准写法简化写法组件的嵌套非单文件的不足之处 2、单文件组件vue单文件组件的使用脚手架创建项目重点…

Adobe推出AI视频超分辨率工具VideoGigaGAN

&#x1f989; AI新闻 &#x1f680; Adobe推出AI视频超分辨率工具VideoGigaGAN 摘要&#xff1a;Adobe公司最新推出的AI工具VideoGigaGAN&#xff0c;利用上采样技术将视频分辨率从128128提升至10241024。这一工具基于GigaGAN模型开发&#xff0c;专注于生成视频超分辨率&am…

OpenHarmony实战开发-属性样式动画

在关键帧&#xff08;Keyframes&#xff09;中动态设置父组件的width和height&#xff0c;实现组件变大缩小。子组件设置scale属性使父子组件同时缩放&#xff0c;再设置opacity实现父子组件的显示与隐藏。 <!-- xxx.hml --> <div class"container"><…

Objenesis 底层探究

Objenesis 简介 Objenesis 是一个 Java 库&#xff0c;用于在不调用构造方法的情况下创建对象。由于绕过了构造方法&#xff0c;所以无法调用构造方法中的初始化逻辑。相应的&#xff0c;Objenesis 无法创建抽象类、枚举、接口的实例对象。 起源 与其称之为起源&#xff0c;…

【笔试训练】day15

1.平方数 水题直接看代码 代码&#xff1a; #define _CRT_SECURE_NO_WARNINGS 1 #include <iostream> #include<math.h> #include<algorithm> using namespace std; typedef long long ll; int main() {ll x;cin >> x;ll a sqrt(x);if (abs(a * a -…

【Unity动画系统】动画状态转换详解

动画状态转换 此空处可以改换新转换名字。 表示有多个转换&#xff0c;播放顺序不可调整。 Solo:表示只执行它们&#xff0c;其他没勾选的不考虑&#xff1b;都勾选了&#xff0c;哪个转换条件先满足&#xff0c;就先执行哪个转换;如果同时满足&#xff0c;那就按顺序执行。 M…

【数据结构】顺序表专题

前言 本篇文章我们来进行有关顺序表的专题训练&#xff0c;让我们一起来看一下有关顺序表的算法题 &#x1f493; 个人主页&#xff1a;小张同学zkf ⏩ 文章专栏&#xff1a;数据结构 &#x1f4dd;若有问题 评论区见 &#x1f389;欢迎大家点赞&#x1f44d;收藏⭐文章 1.移除…

Python urllib 爬虫入门(1)

本文主要为Python urllib类库函数和属性介绍及一些简单示例。 目录 urllib爬取网页 简单示例 写入文件 其他读取方法 readline函数 readlines函数 response属性 当前环境信息 返回状态码 返回url地址 对url进行编码与解码 写入文件 总结 urllib爬取网页 通过pyth…

牛客网刷题 | CC1 获取字符串长度

目前主要分为三个专栏&#xff0c;后续还会添加&#xff1a; 专栏如下&#xff1a; C语言刷题解析 C语言系列文章 我的成长经历 感谢阅读&#xff01; 初来乍到&#xff0c;如有错误请指出&#xff0c;感谢&#xff01; 描述 键盘输入一个字符串…

Leetcode297_二叉树的序列化与反序列化

1.leetcode原题链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 2.题目描述 序列化是将一个数据结构或者对象转换为连续的比特位的操作&#xff0c;进而可以将转换后的数据存储在一个文件或者内存中&#xff0c;同时也可以通过网络传输到另一个计算机环境&#xf…

redis故障中出现的缓存击穿、缓存穿透、缓存雪崩?

一、背景&#xff1a; 在维护redis服务过程中&#xff0c;经常遇见一些redis的名词&#xff0c;例如缓存击穿、缓存穿透、缓存雪崩等&#xff0c;但是不是很理解这些&#xff0c;如下就来解析一下缓存击穿、缓存穿透、缓存雪崩名词。 二、缓存穿透问题&#xff1a; 常见的缓存使…